119 research outputs found

    Decision-Feedback Detection Strategy for Nonlinear Frequency-Division Multiplexing

    Full text link
    By exploiting a causality property of the nonlinear Fourier transform, a novel decision-feedback detection strategy for nonlinear frequency-division multiplexing (NFDM) systems is introduced. The performance of the proposed strategy is investigated both by simulations and by theoretical bounds and approximations, showing that it achieves a considerable performance improvement compared to previously adopted techniques in terms of Q-factor. The obtained improvement demonstrates that, by tailoring the detection strategy to the peculiar properties of the nonlinear Fourier transform, it is possible to boost the performance of NFDM systems and overcome current limitations imposed by the use of more conventional detection techniques suitable for the linear regime

    Why Noise and Dispersion may Seriously Hamper Nonlinear Frequency-Division Multiplexing

    Full text link
    The performance of optical fiber systems based on nonlinear frequency-division multiplexing (NFDM) or on more conventional transmission techniques is compared through numerical simulations. Some critical issues affecting NFDM systems-namely, the strict requirements needed to avoid burst interaction due to signal dispersion and the unfavorable dependence of performance on burst length-are investigated, highlighting their potentially disruptive effect in terms of spectral efficiency. Two digital processing techniques are finally proposed to halve the guard time between NFDM symbol bursts and reduce the size of the processing window at the receiver, increasing spectral efficiency and reducing computational complexity.Comment: The manuscript has been submitted to Photonics Technology Letters for publicatio

    A Novel Detection Strategy for Nonlinear Frequency-Division Multiplexing

    Full text link
    A novel decision feedback detection strategy exploiting a causality property of the nonlinear Fourier transform is introduced. The novel strategy achieves a considerable performance improvement compared to previously adopted strategies in terms of Q-factor.Comment: The work has been submitted to the Optical Fiber Communication (OFC) Conference 201

    Accurate statistical performance evaluation of EDC techniques on 10 Gb/s multimode fiber links

    Get PDF
    Abstract--- We perform a statistical investigation (based on the Cambridge 108-fiber set) of the performance limits of different electronic dispersion compensation (EDC) techniques in terms of their robustness to modal dispersion, considering the impact of connection offsets in 10GBASE-LRM (long reach multimode) systems with connection offsets. We also investigate the effectiveness of an accurate and fast analytical method to take into account any amount of intersymbol interference based on Gaussian quadrature rules, thus allowing a thorough statistical investigation of the performance of different EDC techniques

    Scope and Limitations of the Nonlinear Shannon Limit

    Get PDF
    The concept and significance of the so called nonlinear Shannon limit are reviewed and their relation to the channel capacity is analyzed from an information theory point of view. It is shown that this is a limit (if at all) holding only for conventional detection strategies. Indeed, it should only be considered as a limit to the information rate that can be achieved with a given modulation/detection scheme. By virtue of some simple examples and theoretical results, it is also shown that, using the same approximated models commonly adopted for deriving the nonlinear Shannon limit, the information rate can be arbitrarily increased by increasing the input power. To this aim, the validity of some popular approximations to the output distribution is also examined to show that their application outside the scope for which they were devised can lead to pitfalls. To the best of our belief, the existence of a true nonlinear Shannon limit has still not been demonstrated, and the problem of determining the channel capacity of a fiber-optic system in the presence of Kerr nonlinearities is still an open issue

    On the error probability evaluation in lightwave systems with optical amplification

    Get PDF
    We review the time domain, frequency domain, and Fourier series Karhunen–Loéve series expansion (KLSE) methods for exact BER evaluation in intensity- and phase-modulated direct-detection optically amplified systems.We compare their complexity and computational efficiency, and discuss the most relevant implementation issues. We show that the method based on a Fourier series expansion has the simplest implementation and requires the minimum number of eigenvalues to converge to the exact BER value for various kind of optical filters. For this method, we also introduce an equivalent form of the moment generating function, that avoids the singularity for eigenvalues equal to zero, and derive an alternative expansion where signal and noise are expanded on the same orthonormal basis

    Narrow filtered DPSK implements order-1 CAPS optical line coding

    Get PDF
    A novel family of optical line codes has been presented elsewhere, here referred to as combined amplitude-phase shift (CAPS) codes. We show here that narrow filtering of a differential phase shift keying signal with bandwidth equal to about 2/3 of the bit rate turns out to closely implement the order-1 CAPS line coding. Performance of the two systems is compared for various types of optical filters

    Nonlinearity Mitigation in WDM Systems: Models, Strategies, and Achievable Rates

    Get PDF
    After reviewing models and mitigation strategies for interchannel nonlinear interference (NLI), we focus on the frequency-resolved logarithmic perturbation model to study the coherence properties of NLI. Based on this study, we devise an NLI mitigation strategy which exploits the synergic effect of phase and polarization noise compensation (PPN) and subcarrier multiplexing with symbol-rate optimization. This synergy persists even for high-order modulation alphabets and Gaussian symbols. A particle method for the computation of the resulting achievable information rate and spectral efficiency (SE) is presented and employed to lower-bound the channel capacity. The dependence of the SE on the link length, amplifier spacing, and presence or absence of inline dispersion compensation is studied. Single-polarization and dual-polarization scenarios with either independent or joint processing of the two polarizations are considered. Numerical results show that, in links with ideal distributed amplification, an SE gain of about 1 bit/s/Hz/polarization can be obtained (or, in alternative, the system reach can be doubled at a given SE) with respect to single-carrier systems without PPN mitigation. The gain is lower with lumped amplification, increases with the number of spans, decreases with the span length, and is further reduced by in-line dispersion compensation. For instance, considering a dispersion-unmanaged link with lumped amplification and an amplifier spacing of 60 km, the SE after 80 spans can be be increased from 4.5 to 4.8 bit/s/Hz/polarization, or the reach raised up to 100 spans (+25%) for a fixed SE.Comment: Submitted to Journal of Lightwave Technolog

    Improved Detection Strategies for Nonlinear Frequency-Division Multiplexing

    Full text link
    Two novel detection strategies for nonlinear Fourier transform-based transmission schemes are proposed. We show, through numerical simulations, that both strategies achieve a good performance improvement (up to 3 dB and 5 dB) with respect to conventional detection, respectively without or only moderately increasing the computational complexity of the receiver.Comment: This work will be presented at PIERS 2018 in Toyama, Japan, and has been submitted for publication in the conference proceeding

    Nonlinear Probabilistic Constellation Shaping with Sequence Selection

    Full text link
    Probabilistic shaping is a pragmatic approach to improve the performance of coherent optical fiber communication systems. In the nonlinear regime, the advantages offered by probabilistic shaping might increase thanks to the opportunity to obtain an additional nonlinear shaping gain. Unfortunately, the optimization of conventional shaping techniques, such as probabilistic amplitude shaping (PAS), yields a relevant nonlinear shaping gain only in scenarios of limited practical interest. In this manuscript we use sequence selection to investigate the potential, opportunities, and challenges offered by nonlinear probabilistic shaping. First, we show that ideal sequence selection is able to provide up to 0.13 bit/s/Hz gain with respect to PAS with an optimized blocklength. However, this additional gain is obtained only if the selection metric accounts for the signs of the symbols: they must be known to compute the selection metric, but there is no need to shape them. Furthermore, we show that the selection depends in a non-critical way on the symbol rate and link length: the sequences selected for a certain scenario still provide a relevant gain if these are modified. Then, we analyze and compare several practical implementations of sequence selection by taking into account interaction with forward error correction (FEC) and complexity. Overall, the single block and the multi block FEC-independent bit scrambling are the best options, with a gain up to 0.08 bit/s/Hz. The main challenge and limitation to their practical implementation remains the evaluation of the metric, whose complexity is currently too high. Finally, we show that the nonlinear shaping gain provided by sequence selection persists when carrier phase recovery is included.Comment: The manuscript has been submitted for publication to the Journal of Lightwave Technolog
    • …
    corecore